

Status Update on GMAO's Upcoming GEOS-IT and GEOS R21C Retrospective Analyses

CERES Science Team Meeting
Presented by Gary Partyka

Contributors: Austin Conaty, Amal El Akkraoui, Rob Lucchesi, Mike Bosilovich

October 12-14, 2021

The GMAO is preparing to produce two retrospective products bridging the gap from NASA's EOS to the post-EOS observations:

- GEOS-IT for use by NASA instrument teams
- GEOS-R21C a retrospective analysis for the 21st century for reanalysis research

For this briefing, we will focus on the GEOS-IT system and comparisons of GEOS-CERES 5.4.1, GEOS-FPIT, and GEOS-IT

- Surface temperature
- T and q profiles; UTH
- Top of the atmosphere energy balance
- Diurnal temperature range
- O-F statistics

2-meter Temperature Difference (K) with ERA5; January 2018

Substantial mean biases with respect to ERA5 (which we have vetted in-house)

GEOS-IT employs an updated land model which has been carefully validated by GMAO

2-meter Temperature Difference (K) with ERA5; July 2018

Substantial mean biases with respect to ERA5 (which we have vetted in-house) regional cold biases (Africa, SAM) result from an exaggerated water cycle in these areas (i.e. enhanced evaporation)

The Diurnal Temperature Range (DTR) will be more realistic in GEOS-IT

Local Sahara Regional DTR; January 2018

In January, the diurnal maximum over the Sahara appears similar between the systems. Updated heat capacity in GEOS-IT allows other hours to not drop as rapidly as before.

Local Sahara Regional DTR; July 2018

The July DTR exhibits a significantly smaller amplitude better aligned with observations. CERES 5.4.1 maximum is too hot.

Top of the Atmosphere Energy Balance (W/m2)

defined as net shortwave (SWTNT) minus outgoing longwave (LWTUP)

Tropical UTH (mg/kg) Profiles among GMAO Systems

The new GEOS-IT system exhibits a significantly drier and closer-to-ERA5 q-profile in the 200-350hPa levels; what about 100, 150hPa?

O-F Statistics vs. RAOB

January 2018

Mean (dash) Std. Dev. (solid)

O-F Statistics vs. RAOB

July 2018

Mean (dash) Std. Dev. (solid)

Summary

- The GMAO is preparing to produce two retrospective products bridging the gap from NASA's EOS observations to the post-EOS observations: GEOS-IT for the instrument teams and GEOS-R21C for reanalysis research applications.
- Build on the advances in modeling and data assimilation introduced into GEOS-FP since MERRA-2.
- Opportunity to use upgraded observing system.
- The GEOS-IT is planned as a replacement to the current GEOS-FPIT.
 - Production team is working on a sample data to be validated internally and shared with FPIT users for further validation.
- The GEOS-R21C is planned as a stepping-stone towards the decadal goal of producing MERRA-3, an integrated Earth System reanalysis, coupling atmosphere, ocean, land and ice.
 - Preliminary test results with a prototype-R21C are encouraging.
 - On-going work: dry-mass conservation, land-ice mask in OSTIA boundary conditions, use of IMERG product for the observation-corrected model precipitation, production stream strategy.